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Risk of Today’s Al Systems




Risk of Today’s Al Systems

* Al camera ruins football game for fans after mistaking referee’s bald head
for ball




Risk of Today’s Al Systems

* Existing AI models have extremely high bias and risk when

predicting COVID-19.

OPEN

Common pitfalls and recommendations for using
machine learning to detect and prognosticate for
COVID-19 using chest radiographs and CT scans

Michael Roberts ©'2X, Derek Driggs', Matthew Thorpe?, Julian Gilbey ©', Michael Yeung ©4,

Stephan Ursprung ©45, Angelica l. Aviles-Rivero', Christian Etmann’, Cathal McCague*5,
Lucian Beer?, Jonathan R. Weir-McCall ©4¢, Zhongzhao Teng*, Effrossyni Gkrania-Klotsas
AIX-COVNET?*, James H. F. Rudd ©23¢, Evis Sala®*>3¢ and Carola-Bibiane Schonlieb"3¢
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Prediction models for diagnosis and prognosis of covid-19:

nare ANALYSIS . e :
machine intelligence systematic review and critical appraisal

M) Check for updates
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Risk of Today’s Al Systems

e C(Correlation 1s no substitute for causal evidence
e (COVID prediction Als were found to be “picking up on the text font that certain

hospitals used to label the scans.”
e “As aresult, fonts from hospitals with more serious caseloads became predictors of

covid risk.”

Hundreds of Al tools have been built to catch
covid. None of them helped.

Some have been used in hospitals, despite not being properly tested. But the
pandemic could help make medical Al better.

By Will Douglas Heaven July 30,2021




Risk of Today’s Al Systems

Owner: “Car kept jamming on the
brakes thinking this was a person”



Risk of Today’s Al Systems




Risk of Today’s Al Systems

Most ML methods are developed under i.i.d hypothesis

Test Distribution
A

Training Distribution

A




From a DATA Perspective

Data Problems

Distribution Shifts

Sub-population Structure

Data Corruptions

Analyze —>

Model problems under
distribution shifts

Poor generalization

Unfair to minority groups

Sensitive to perturbations

Solve



Main Scope

Analyze data heterogeneity to address the
problems caused by distribution shifts from a
systematic perspective

Data Heterogeneity: the complex nature of data

* sub-population structures

* hard samples, noisy samples

» different data generating processes
» different data types, sources, ...



Data Heterogeneity

ML models are based on heterogeneous data sources

e multiple environments
e different Y|.X distributions

= . )
Training Target e different data size
Data Data

Today: opportunities and challenges of heterogeneity




Main Scope

Analyze data heterogeneity to address the
problems caused by distribution shifts from a
systematic perspective

Distribution Shifts: complicated distribution shift patterns in practice

* Data corruptions
* Sub-population shifts: X-shifts vs. Y |X-shifts



X-shifts vs. Y| X-shifts

e So far: Humans are robust on all distributions. Can we get a universally good model?

e Implicitly, this view focuses on covariate shift (X-shift)
o  Traditional focus of ML

e On the other hand, we expect Y| X-shifts when there are unobserved factors

o Traditional focus of causal inference

e For Y|X-shifts, we don’t expect a single model to perform well across distributions
e Requires application-specific understanding of distributional differences



Main Scope

Analyze data heterogeneity to address the
problems caused by distribution shifts from a
systematic perspective

A system of view: different stages in the whole ML pipeline

* Data collection->Model training -> Model evaluation -> Deployment



A Systemic Perspective

e Building a reliable Al stack requires a holistic view

i Data Collection : »: Model Training :®
' Deployment '« y

| , - Model Evaluation ' E/
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Part 1: A critical review of existing approaches
Part 2: Shift to an inductive research philosophy
Part 3: Towards heterogeneity-aware machine learning

Part 4: Future Directions
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Distributionally Robust Optimization (DRO)

Empirical Risk min E 2(0:7
Z~P ;
Minimization feb tram[ ( ’ )] P

DRO Jug sup Ez-o [£(6; 2)]

P ={Q: Dist(Q, Perain) < p}

Instead of minimizing loss over training distribution,
minimize loss over distributions near it



Distributionally Robust Optimization (DRO)

DRO g sup Ez-o[£(9; 2)] P

distay/ce between
digtributions

Training
distribution
old

Consider different mixture ratios
of young and old people!




Distributionally Robust Optimization (DRO)

Empirical Risk min E 2(0:7
Z~Ptrai
Minimization e train [ ( ! )] P

distay/ce between
diptributions

DRO ug sup Ez-ol£(9; 2)]

P ={Q: Dist(Q, Perain) < p}

1. Define set of distributions you care about
2. Minimize loss on worst distribution in this set



Examples: set of distributions we care about

recall the objective

P ={Q: Dist(Q, Perain) < p}

g sup Ez-ql[£(6;Z)]

f-divergence: about densities f(L)

dQ .
If L= % 1s “near 17, then Q and P are near.

For a convex function,

f:R. >R with f(1) =0,

=)



Examples: set of distributions we care about

recall the objective

P ={Q: Dist(Q, Perain) < p}

g sup Ez-ql[£(6;Z)]

S-DRO: reweight data

training g "
distribution 0%

0
» L
o .
> .
o .
\¢ o/
L4
. 0
S ‘e
‘-“ ~ - -

Age=30 Age=60 Age=30 Age=60

0..
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Examples: set of distributions we care about

recall the objective

P ={Q: Dist(Q, Perain) < p}

g sup Ez-ql[£(6;Z)]

S-DRO: reweight data

training g "
distribution 0%

L]
»
L

0
3
Q 4 0
o .
. .
o .
. o/
»
* 0, .
wns® LT

Age=30 Age=60 Age=30

v




Examples: set of distributions we care about

recall the objective

P ={Q: Dist(Q, Perain) < p}

g sup Ez-ql[£(6;Z)]

S-DRO: reweight data

training : 80%—_

distribution 70%

0
» L
o .
> .
o .
\¢ o/
L4
. 0
S ‘e
‘-“ ~ - -

Age=30 Age=60 Age=30 Age=60




Examples: set of distributions we care about

recall the objective

P ={Q: Dist(Q, Perain) < p}

min sQléjr; Ez-q[€(6;2)]

Wasserstein distance: earth-mover’s distance that considers geometry
A

the minimal cost to
transport Q to P




Examples: set of distributions we care about

P ={Q: Dist(Q, Perain) < p}

Wasserstein-DRO: perturb data

training

| distribution
$70%:

Q
. o
o .
. o
.
» o/
0
o 0-,
ans® ‘a

Age=30 Age=60

30%

B

recall the objective

g sup Ez-ql[£(6;Z)]

perturbations

30%

Age=30

Age=45  Age=60



Examples: set of distributions we care about

recall the objective

P ={Q: Dist(Q, Perain) < p}

g sup Ez-ql[£(6;Z)]

Wasserstein-DRO: perturb data

training
distribution
$70%:
o:. (1) “0. --"‘. T d “"---“”’
i 30% 30%

Age=30 Age=60 Age=30 Age=45 Age=60



Examples: set of distributions we care about

P ={Q: Dist(Q, Perain) < p}

Wasserstein-DRO: perturb data

training

| distribution
$70%:

Q
. o
o .
5 .
o .
» o/
0
o 0’.. o
ans® Yugun®

Age=30 Age=60

.
*
.

.
.
-------

“30%

& Yo "
. o...‘ﬁ--““
30%

recall the objective

g sup Ez-ql[£(6;Z)]

20% 20%

Age=30

Age=45

Age=60 Age=75



Intuition: f~-divergence vs Wasserstein distance

A

P ={Q: Dist(Q, Perain) < p}

Wasserstein distance: compare in this direction
moving samples

<

>

recall the objective

g sup Ez-ql[£(6;Z)]

>

f-divergence: compare in this direction

comparing densities




DRO: set of distributions we care about: there are lots!

More Methods:

Marginal DRO: only perturbs marginal distribution

Sinkhorn DRO: adds entropy term to regularize Wasserstein distance
Geometric DRO: uses geometric Wasserstein distance

MMD DRO: uses MMD distance

Holistic DRO: uses a mixture of distances

Unified (OT) DRO: unifies Wasserstein distance and f-divergence

For more about DRO, please refer to the survey of DRO: Rahimian, H., & Mehrotra, S.
(2019). Distributionally robust optimization: A review. arXiv preprint arXiv:1908.05659.

Duchi, J., Hashimoto, T., & Namkoong, H. (2023). Distributionally robust losses for latent covariate mixtures. Operations Research, 71(2), 649-664.
Wang, J., Gao, R., & Xie, Y. (2021). Sinkhorn distributionally robust optimization. arXiv preprint arXiv:2109.11926.

Liu, J., Wu, J., Li, B., & Cui, P. (2022). Distributionally robust optimization with data geometry. In NeurIPS.

Staib, M., & Jegelka, S. (2019). Distributionally robust optimization and generalization in kernel methods. In NeurIPS.

Bennouna, A., & Van Parys, B. (2022). Holistic robust data-driven decisions. arXiv preprint arXiv:2207.09560.

Blanchet, J., Kuhn, D., Li, J., & Taskesen, B. (2023). Unifying Distributionally Robust Optimization via Optimal Transport Theory. arXiv preprint
arXiv:2308.05414.



DRO Package

An easy-to-use codebase for DRO

e Implement 12 typical DRO algorithms

o fDRO: CVaR-DRO, KL-DRO, TV-DRO,x*-DRO
WDRO: Wasserstein DRO, Augmented WDRO, Satisficing WDRO
Sinkhorn-DRO
Holistic-DRO dro 0.0.1
Unified (OT)-DRO Pip inetatt 4o O

- W*E

%8 336

O O O O




DRO makes a strong assumption

g sup Ez-ql£(6;Z)]

Modeling Goal

Caretully choose
the set ‘P

> Do well on real
distribution shifts!



Critical View of DRO: not better than ERM!
ERM

L [ f-DRO B Sinkhorn-DRO [] Unified-DRO
[ Wass-DRO [] Marginal-DRO [ HR-DRO

Q
Q
< |
o 80- M -
Q
?_‘D L
< 70 -
=
60 -
XCS Income ACS Pub.Cov ACS Pub.Cov US Accident ACS Income ACS Mobility Taxi
(Young—OIld) (2010—2017) (NE—LA) (CA—OR) (CA—PR) (MS—HI) (NYC—BOG)
ERM

DRO does NO'T show significant improvements over ERM!

Hard to choose this set of distributions P!!!

Liu, J., Wang, T., Cui, P., & Namkoong, H. On the Need of a Modeling Language for Distribution Shifts: Illustrations on Tabular Datasets.



Critical View of DRO: over-pessimism of the worst-case

Optimal in-distribution accuracy

1 —minE5,
HREp

[£(f(X

);Y)].

Source
Distribution Domain

Worst-Distribution

Worst-Distribution

Worst-Distribution

50 Target

LR
SVM
NN
RF
LGBM
XGB

of KL-DRO of x?-DRO of TV-DRO Domains’ Quantile
e=0 e=1le? e=le! e=le! e=5e! e=1le! e=21 50% 25% 0%
80.37 79.77 78.93 76.07
80.72 79.86 78.88 76.11
80.26 79.81 78.52 75.08
79.61 78.78 T77.84 75.93
81.74 80.51 79.47 76.43
81.29 80.13 79.13 75.08

The worst-case distribution is too conservative!

Liu, J., Wang, T., Cui, P., & Namkoong, H. On the Need of a Modeling Language for Distribution Shifts: Illustrations on Tabular Datasets.



Critical View of DRO: mismatch with real target domains

Transfer accuracy from worst to target

TAce(P*, Q1) = 1 — Eg [6(f*(X),Y)], where f* € argminEp, [6(f(X),Y)]

feF
test on the 50 target domains model fit on the worst-case distribution
©  Worst Domain Acc ©  Worst Domain Acc
80% * * * 80% *
60% 50% * *
Radius: 0 0.05 0.1 0.2 Radius: 0 0.001 0.005 0.01
(a) ACS Income, KL-DRO (b) ACS Income, Wasserstein-DRO

The worst-case distribution is NOT aligned with the 50 target domains!
Liu, J., Wang, T., Cui, P., & Namkoong, H. On the Need of a Modeling Language for Distribution Shifts: Illustrations on Tabular Datasets.



Hard to pick set of distributions; can we do better?

What if we were given a set of environments that we cared about?



Hard to pick set of distributions P; can we do better?

Cartoon Photo Sketch

S é‘:é

Problem Setting:
e Train: Multiple training domains P)li— Vs szf Voo P)I({ Y

e Test: New domain Qx,Y

Compare to DRO setting, more information about potential shifts!

Figure from Gulrajani, I., & Lopez-Paz, D. (2020, October). In Search of Lost Domain Generalization. In ICLR 2020.
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Invariant Learning

Modeling — Goal

Learn an invariant
mechanism across
given environments

Generalize to new
environments

Assume true invariant mechanism can be
learned with given heterogeneous data



Invariant Learning: Invariant Causal Prediction

Find subset of covariates X with an invariant relationship to Y across environments!

Traffic
accident
v
Getting
up late
N
Late for Long
school queues

Peters, J., Buhlmann, P., & Meinshausen, N. (2015). Causal inference using invariant prediction: identification and confidence intervals.
Figure from https://learn.saylor.org/mod/page/view.php?id=21614

“—— invariant predictors



https://learn.saylor.org/mod/page/view.php?id=21614

Invariant Learning: Invariant Risk Minimization

Assume existence of feature @(X) such that ¥|@(X) 1s invariant across
environments. Then, learn this feature.

Cow Camel

Task: classify between
cows and camels

Use animals @(X) for
prediction, rather than
backgrounds!

Arjovsky, M., Bottou, L., Gulrajani, I., & Lopez-Paz, D. (2019). Invariant risk minimization.
Figure from https://towardsdatascience.com/on-learning-in-the-presence-of-underrepresented-groups-8937434d3c85



Invariant Learning: Invariant Risk Minimization

Assume existence of feature @(X) such that Y| @(X) 1s invariant across
environments. Then, learn this feature.

min Z R¢(w o ®)

P X>H
wH—Y e€r
subject to w € argmin R°(w o ®), for all e € &, invariance
w:H—Y
Practical version:
min R(®) 4+ A+ |[Vajw=1.0 R°(w - ®)||%, (IRMv1)
LX) ec&

Arjovsky, M., Bottou, L., Gulrajani, 1., & Lopez-Paz, D. (2019). Invariant risk minimization.



Invariance Assumption

e To deal with the potential distribution shifts, one common assumption is:

There exists random variable ®*(X) such that the following properties hold:

1 Invariance property: for all e1, ez € supp(€), we have
P (Y[®* (X)) = P2 (Y[®*(X))

2 Sufficiency property: Y = f(®*) + ¢, € L X.

e Some comments:

® The first property assumes that the relationship between ®*(X) and Y remains
invariant across environments, which is also referred to as causal relationship.

® The second property assumes that ®*(X) can provide all information of the
target label Y.

® $*(X) is referred to as (Causally) Invariant Predictors.

M. Koyama and S. Yamaguchi. OQut-of-distribution generalization with maximal invariant predictor.




Maximal Invariant Predictor

e To obtain the invariant predictor ®*(X), we seek for:
The invariance set 1 with respect to £ is defined as:
Ie = {®(X) : Y L &|2(X)} = {®(X) : H[Y[®(X)] = H[Y|®(X), £]} (6)

where H|-| is the Shannon entropy of a random variable. The corresponding maximal
invariant predictor (MIP) of Z¢ is defined as:

S = arg ql)rréai); I(Y; ®)

(7)
where I(-;-) measures Shannon mutual information between two random variables.

Remarks:
* &*(X) is MIP.
® Optimal for OOD is Y = E[Y|®*(X)].
¢ "Find *(X)" — "Find MIP"

M. Koyama and S. Yamaguchi. OQut-of-distribution generalization with maximal invariant predictor.




Invariant Learning

More literature

S. Chang, et al. Invariant rationalization. In ICML, 2020.

M. Koyama and S. Yamaguchi. Out-of-distribution generalization with maximal invariant predictor.

K. Ahuja, et al. Invariant risk minimization games. In ICML, 2020.

E. Rosenfeld, et al. The risks of invariant risk minimization.In ICLR, 2020.

D. Krueger, et al. Out-of-distribution generalization via risk extrapolation (rex). In ICML, 2021.

D. Mahajan, et al. Domain generalization using causal matching. In ICML, 2021.

P. Kamath, et al. Does invariant risk minimization capture invariance? In AISTATS, 2021.

B. Li, et al. Invariant information bottleneck for domain generalization. In AAAI, 2022.

H. Wang, et al. Provable domain generalization via invariant-feature subspace recovery. In ICML, 2022.
J. Fan, et al. Environment invariant linear least squares, 2023.




Methods and assumptions

Distributionally Invariant
Robust Optimization Learning
Het " Pre-defined set of distributions Pre-defined set of
cterogencity near training distribution environments
. Worst-case distribution Learn true invariant
Assumptions guarantees generalization mechanism

Do these assumptions work
in practice?




Not Really! IRM does not beat ERM on Image Datasets!

IN SEARCH OF LOST DOMAIN GENERALIZATION

Ishaan Gulrajani* David Lopez-Paz
Stanford University Facebook AI Research
igul222@gmail.com dlp@fb.com

Target Accuracy

CMNIST RMNIST VLCS PACS Office-home Terralnc DomainNet

Plot generated from Table 4 from Gulrajani, 1., & Lopez-Paz, D. (2020, October). In Search of Lost Domain
Generalization. In International Conference on Learning Representations.



Outline

Part 1: A critical review of existing approaches
o Distributionally Robust Optimization

: , :l» make modeling assumptions
o Invariant Learning

o Pretrained “Big” Models scale up model & data
Part 2: Shift to an inductive research philosophy
Part 3: Towards heterogeneity-aware machine learning

Part 4: Future Directions



CLIP: learn relationship between images and captions

(1) Contrastive pre-training

Pepper the
aussie pup

Text

’,/jifiiiizj

\\\;;;;;\\\l

(2) Create dataset classifier from label text

plane

car

dog

A photo of

a {object}.

,/jifiiii/J

(3) Use for zero-shot prediction

T, | T, | T3 Ty
bird
—» L || LT LT, | Ty I, Ty
Ll L || LT LT, | Ty I, Ty
> L || LT | I3T, | 1Ty I3 Ty
> Iy INTy | InT2 | In'T3 InTn

Image

Y

Encoder

Text
Encoder

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. Learning transferable visual models from

natural language supervision. ICML, 2021.

\ 4 \ 4 \ 4 \ 4
T T, | T3 Ty
L LT | 'Ty | I1'Ts I;'Tn
v
A photo of
a dog.




“Bi1g” Models: CLIP 1s robust to natural distribution shifts!

IMAGENET

DATASET RESNET101 CLIP VIT-L
Effective
§ 76.2% 76.2% robustness
ImageNet
AR PacE
‘ = A 70.1% +6%

ImageNet V2

ST ST —
L ;...‘\" R e +51%

ImageNet Rendition

: =
.' : | ‘ » 0 |
Ao Jo W : K BN z2.6% 72.3% +40 A) Radford, Kim, Hallacy,

ObjectNet Ramesh, Goh, Agarwal,
Sastry, Askell, Mishkin,

o\ 7 i ! Clark, Krueger, Sutskever
k_/ﬂg ‘\ij P — +35%

25.2% 60.2% ] )
ImageNet Sketch Learning Transferable Visual

Models From Natural
= M

7 Language Supervision (2021
ImageNet Adversarial

77.1%



CLIP: scale up data

Supervised ImageNet training data

e ~1M (1mage, label) pairs
e Data from one source
e Needs labelers

CLIP training data

~400M (1mage, caption) pairs
Data from all over the
internet; more diverse

No need for labelers; there is
lots of (image, caption) data
across the internet



Where are gains coming from? Data!

Data Determines Distributional Robustness
in Contrastive Language Image Pre-training (CLIP)

Alex Fang! Gabriel Ilharco! Mitchell Wortsman' Yuhao Wan'

Vaishaal Shankar® Achal Dave® Ludwig Schmidtf®

Abstract

Contrastively trained language-image models such as CLIP, ALIGN, and BASIC have demonstrated
unprecedented robustness to multiple challenging natural distribution shifts. Since these language-image
models differ from previous training approaches in several ways, an important question is what causes the
large robustness gains. We answer this question via a systematic experimental investigation. Concretely,
we study five different possible causes for the robustness gains: (i) the training set size, (ii) the training
distribution, (iii) language supervision at training time, (iv) language supervision at test time, and (v)
the contrastive loss function. Our experiments show that the more diverse training distribution is the
main cause for the robustness gains, with the other factors contributing little to no robustness. Beyond
our experimental results, we also introduce ImageNet-Captions, a version of ImageNet with original text
annotations from Flickr, to enable further controlled experiments of language-image training.

I ,
Training distribution
Loss function

o : :
Modelarchitecture



Is generalization under distribution shifts solved?



Just adding more data # better

Quality Not Quantity: On the Interaction between
Dataset Design and Robustness of CLIP

Thao Nguyen'! Gabriel Ilharco? Mitchell Wortsman?
Sewoong Oh! Ludwig Schmidt!?
__45; X
X - e
i 351 g_ = Linear fit (YFCC15m)
a = ~Linear fit (LAION15m)
8257 < Linear fit (YFCC15m+LAION15m)
o © Linear fit (YFCC7.5m+LAION7.5m)
D 154 A m YFCC15m
- B % LAION15m
o - ® YFCC15m+LAION15m
£ o YFCC7.5m+LAION7.5m
=
5 } ! ! ! ! 1 ! ! !
25 35 45 55 65 75 10 20 30 40
ImageNet (class-subsampled) (top-1, %) ImageNet (top-1, %)

Quality Not Quantity: On the Interaction between Dataset Design and Robustness of CLIP
Thao Nguyen, Gabriel Ilharco, Mitchell Wortsman, Sewoong Oh, Ludwig Schmidt



Sometimes you need (costly) specialized data!

driving
. data
internet Moo i
any importan
data applications!
medical
data
$ cheap! $$$ expensive!

Not only in terms of dollars! E.g. time to perform an experiment



Two existing approaches to distribution shift

1. Make modeling assumptions

2. Scale up data and models

Strengths

Clear assumptions

about distribution
shift

Works well to
improve robustness

to many real
distribution shifts

Limitations

Current methods do
not consistently
provide robustness
to many real
distribution shifts

Relevant,
application-specific
data can be costly to
acquire



Two existing approaches to distribution shift

1. Make modeling assumptions

2. Scale up data and models

Can we do better?

Strengths

Clear assumptions

about distribution
shift

Works well to
improve robustness

to many real
distribution shifts

Limitations

Current methods do
not consistently
provide robustness
to many real
distribution shifts

Relevant,
application-specific
data can be costly to
acquire



Can we do better?

Don’t just do this!

1. Make modeling assumptions

2. Scale up data and models

Instead, do this!

Understand the application
First understand your application and
your data, and then make appropriate
modeling assumptions!

Understand where you need data
Especially when data is costly, first
identify what data 1s most helpful to
collect!



Takeaways

e Empirically current methods (e.g. DRO, invariant learning) do not provide large
gains.

e These methods make assumptions about the relationship between data distributions,
but do not check them.

e We must model real distributions shifts rather than hypothetical ones, in an
application-specific manner.

e For large pretrained models, we also need a better understanding of data distribution.

e In response, we propose carefully understanding the real distribution shift patterns
in each application.
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Inductive vs. Deductive

“| aw” “Ideal hypothesis”™
o o2 ﬁ P M
»* * “speculations r2
of the
We lack a 3 geometer” g“
o
modeling o §
language = ok
= We lack S
: empirical N
“Observation” foundations .""44#r
4QIE>|IIIIIIIII’> o.u o 4‘:¥‘;---
“Consequent

“Facts” “Confirmation” Facts”

Figure from Christopher Ryan, Hong DRO Brown Bag, Columbia



Motivated Example

Income prediction (source: CA, target: PR) Inductive way!

y

814

adation

Work Hour > 34.5 Rules
* Sex: female Age= 31
es
N « Work Hour €[34.5,49.5]

Education = College « Education > College

Accurac
degr

Accuracy
degradation

no / yes * QOccupation set A : MGR,
@ BUS, FIN, LGL, EDU, ENT
Occupation € A /
WYX shift o/ N\ges W Y|X shift

B X shift & Risk Region BN X shift
Difference CA PR Difference

CA PR

Performance drops! Identify covariate regions Simply intervention works a lot!

Liu, J., Wang, T., Cui, P., & Namkoong, H. On the Need of a Modeling Language for Distribution Shifts: Illustrations on Tabular Datasets.



Motivated Example

100%

Target Acc

50% 7

& ® Without ENG
® With ENG
—— y=x

50%

Source Acc

100%

Not only for one method
but for ALL methods!

Liu, J., Wang, T., Cui, P., & Namkoong, H.
On the Need of a Modeling Language for
Distribution Shifts: Illustrations on Tabular
Datasets.



The need for Induction

e If not, we may have FALSE empirical discoveries!



Accuracy-on-the-line doesn’t hold under strong Y |X-shifts

e Source and target performances correlated only when X-shifts dominate

100 .
RZ=0.191 ,_,~
s “ . —— Fitline
<70
’ 3
65 <
Expected out- S 60 go
of-distribution % <
accuracy  Z st =
o
®
Esl | —y=x -
.5 ' —— Baseline accuracy Fe
® Standard models - Acc Drop 10.3, YlX 89%
60 65 70 75 80 85 20 60 100
ImageNet (top-1, %) Source Acc

In-distribution accuracy
* Baseline out-of-distribution accuracy from in-distribution accuracy.

ACS Income (CA— PR)

Accuracy on the line: on the strong correlation between out-of-distribution and in-distribution generalization. On the Need for a Language Describing Distribution Shifts: Illustrations on Tabular Datasets



https://github.com/namkoong-lab/whyshift

Accuracy-on-the-line doesn’t hold under strong Y |X-shifts

e Source and target performances correlated only when X-shifts dominate
Image datasets WHYSHIFT

- Sketch of theoretical bounds CIFAR-10.2 g fMoW-WILDS
3 : il 2] 550 z 00T — 7 100 7 7= 7 7= 7
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§ 2 (27 290 AL e b Fit line ~—— Fit line — Fitline — Fit line
® 70 $ 2? 8 R 530 . = > > 5
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? 1 _/ ’ 3 P =
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310 10 8 s -
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: 50 7 590 ’/' % 30 //’ % (a) ACS Income (CA— PR) (b) ACS Mobility (MS— HI) (c) Taxi (NYC— BOG) (d) ACS Pub.Cov (NE— LA)
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= - i
10 = / :
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ImageNet accuracy CIFAR-10 test accuracy ID test macro F1 0 T2 _& 60 : :
YCB-Objects CINIC-10 ¢ Y = / 7
80 - // -y =X /
K Lz = Linear Fit
é 90 ,/ ® Neural Network /
® PR ®  ImageNet Pretrained Netwark " Acc Drop 21.6, Y|X: 60% Ace Drop 6.4, Y|X: 13% Aée Drop 11.2, Y|X: 0%
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Accuracy on the line: on the strong correlation between out-of-distribution and in-distribution generalization. On the Need for a Language Describing Distribution Shifts: Illustrations on Tabular Datasets


https://github.com/namkoong-lab/whyshift

The need for Induction

e If not, we may have FALSE empirical discoveries!

e If not, the empirical value of methods tailored for distribution shifts 1s LIMITED.



Recall: DRO & IRM don’t outperform ERM on 1image data

IN SEARCH OF LOST DOMAIN GENERALIZATION

Ishaan Gulrajani* David Lopez-Paz
Stanford University Facebook AI Research
igul222@gmail.com dlp@fb.com

Target Accuracy

CMNIST RMNIST VLCS PACS Office-home Terralnc DomainNet

Plot generated from Table 4 from Gulrajani, 1., & Lopez-Paz, D. (2020, October). In Search of Lost Domain
Generalization. In International Conference on Learning Representations.



Also: DRO doesn’t outperform ERM on tabular data

P Y|X > X _ Y|IX>X b e YIX<X o o YIX<X
n 1 [ | "
BN IR B NN Balance ™ Linear-DRO I ‘L
8 Bl SVM Tree """ Fairness I I
< I I I
- I I I
0 I I I
o0 80 - | i I
I I I
I I I
\ !
| | | il e

Setting 1 Setting 2 Setting 3 Setting 4 Setting 5 Setting 6 Setting 7
ACS Income ACS Mobility Taxi ACS Pub.Cov US Accident ACS Pub.Cov ACS Income
(50 target) (50 target) (3 target) (50 target) (12 target) (8 target) (1 target)

Typical DRO methods do not significantly outperform traditional
ERM or tree-based methods!

Liu, J., Wang, T., Cui, P., & Namkoong, H. On the Need of a Modeling Language for Distribution Shifts: Illustrations on Tabular Datasets.



The need for Induction

e If not, we may have FALSE empirical discoveries!
e If not, the empirical value of methods tailored for distribution shifts 1s LIMITED.

e Ifso, we can design/select TARGETED methods!



Inductive approach to ambiguity sets: X-shifts

e Consider shifts induced by age groups: [20,25), [25,30), ..., [75,100)
e Consider DRO methods (DHN’22) tailored to shifts on a subset of covariates
e \ariable selection for ambiguity set: top-K with largest subgroup differences
e Performance varies a lot over variables selected
™0 DRO models based on SVM Marginal DRO WDRO
%60
=
SVM LR RF XGB LGBM 1 2 3 4 5 6K7 8 9 10 Pt 1 2 3 4 5 6K7 8 9 10 Featios

Liu, J., Wang, T., Cui, P., & Namkoong, H. On the Need of a Modeling Language for Distribution Shifts: Illustrations on Tabular Datasets.



Inductive approach to ambiguity sets: Y|X-shifts

Consider Y|X-shifts from NE -> LA (public coverage task)

Consider DRO methods that consider shifts on a subset of covariates and Y
Variable selection for ambiguity set: Y | “income” suffers the largest shift
Performance varies a lot over variables selected

0.70

DRO models based on SVM ~_

Marginal DRO

Target Macro F1

0.35 SVM LR RF XGBLGBM All Y+All Y-+Income

Features Features Feature

Liu, J., Wang, T., Cui, P., & Namkoong, H. On the Need of a Modeling Language for Distribution Shifts: Illustrations on Tabular Datasets.



The need for Induction

e If not, we may have FALSE empirical discoveries!
e If not, the empirical value of methods tailored for distribution shifts 1s LIMITED.

e Ifso, we can design/select TARGETED methods!

e Ifso, we can obtain better improvements!

Analyze data heterogeneity to address the
problems caused by distribution shifts from a
systematic perspective




Outline

Part 1: A critical review of existing approaches
Part 2: Shift to an inductive research philosophy

Part 3: Towards heterogeneity-aware machine learning

o Tools to analyze data heterogeneity
o Model training

o Model evaluation & Improvement

Part 4: Future Directions



Recap: Terminology

e “Distribution shift” refers to mismatch between training distribution P and target
distribution Q

e “Distributional robustness”™ refers to model performance not becoming worse even
when Q is different from P

e “Heterogeneity” refers to the diverse mixture of distributions that generated the data,
including both training and target



Recap: What’s left?

e How to measure the data heterogeneity?

e How to analyze the distribution shift patterns?



Stage 1: Analyze heterogeneity before making modeling
assumptions

B o o Emm s s s s s o Em N Em s s s oEm o omy

B o s Emm s Emm s s s Em o Em 5 s s oEm o omy

% : Data Collection : >i Model Training :@
EOE : Deployment < : Model Evaluation %/



Perspective 1: It’s important to understand 1f your data has
heterogeneous subpopulations

After collecting data, we need to know

Does the training data contain sub-populations
with different Y| X ?

Then we might want to model them separately!
In contrast, invariance methods assume the same X—Y

across the entire population. This assumption can be
Inappropriate.



Discover heterogeneous subpopulations:
predictive heterogeneity

Divide the dataset into subpopulations with different Y|.X
by maximizing additional usable information gain

Definition
sup Iy(Y;X|E) — Iy(Y; X) . mutual information with
Eis asplit model constraints
optimization finite sample
algorithm bounds

Xu, Y., Zhao, S., Song, J., Stewart, R., & Ermon, S. (2019, September). A Theory of Usable Information under Computational Constraints. In International Conference on Learning Representations.
Liu, J., Wu, J,, Pi, R., Xu, R., Zhang, X., Li, B., & Cui, P. (2022, September). Measure the Predictive Heterogeneity. In The Eleventh International Conference on Learning Representations.




Preliminary: Mutual Information

Mutual Information
I(X;Y)=H(Y)—-H(Y|X)

e H(Y): the entropy of Y thg i‘hardnegs’.’ of the
o measuring the uncertainty of ¥ original prediction task

e H(Y|X): the conditional entropy of Y given X
o measuring the uncertainty of Y after having access to some features X

e I[(X;Y): how much information X can provide to reduce the uncertainty
of Y

Liu, J., Wu, J., Pi, R, Xu, R., Zhang, X., Li, B., & Cui, P. (2022, September). Measure the Predictive Heterogeneity. In The Eleventh International Conference on Learning Representations.




Predictive Heterogeneity

sup Iy (V;X[E) = [,(Y;X) Gy sup I, (Y; X|E)

€ is a split ] € is a split
Equivalent

Iy(V; XIE) = ) P(e)ly(Y; XIE = )

eet
= z P(e) ‘ — HV(Y|XJ 8))
eet

the “hardness” of the

prediction task in
environment e

Liu, J., Wu, J., Pi, R., Xu, R., Zhang, X., Li, B., & Cui, P. (2022, September). Measure the Predictive Heterogeneity. In The Eleventh International Conference on Learning Representations.




AlgOrlthm the “hardness” of the

prediction task in
environment e

* Objective Function:

N K
Jin Ry (W, 01(W), ..., 05 (W) = {%2;2:: wis v (for (2:), y3) +HUv (W, Yn }

N
s.t. 0 (W) e argmein {EV(VV, 0) = Zwijﬁv(fg(:ci),yi)} , forj=1,..., K,
=1

* Penalties reflect the difficulty of each ‘sub-task’

* regression:

_ K [ N 2 ] R 2
Uy, (W, Yn) = Varjei)(Y3) = ) (Z wijyi) N oo (N Zyz)
i=1 i=1

N Zi:l w'LJ

» classification:

Uy, W, Yn) = = 300 % (Cis, wi) H(YE),

Liu, J., Wu, J., Pi, R., Xu, R., Zhang, X., Li, B., & Cui, P. (2022, September). Measure the Predictive Heterogeneity. In The Eleventh International Conference on Learning Representations.




Example: predictive heterogeneity

Task: predict crop yields

|
y |
Application in Agriculture | iemeliuRienne .

-08

true division of two crop types learned two sub-populations Clr’;;b;zi”/’ys 1‘3:
(I'iCC VS Wheat) population

learned sub-populations correspond to different crop types;
model separately!

Liu, J., Wu, J., Pi, R., Xu, R., Zhang, X, Li, B., & Cui, P. (2022, September). Measure the Predictive Heterogeneity. In The Eleventh International Conference on Learning Representations.




Example: predictive heterogeneity

Application in COVID-19

0.07 1
0.06 -
0.05 1
0.04 1
0.03 1
0.02 1

0.01 1

0.00

Age distributions of learned sub-populations

Task: predict mortality from
symptom and underlying disease
for people with COVID-19

Top 4 Features: ~--------=-—----—--—----

- o = =y,

w— Group 0
w— Group 1
w—— Group 2

Group 0: SPO2 Diabetes Renal Neurologic

Group 1: Diabetes SPO2 Neurologic Cardiovascular

[ Group 2: Fever Cough Renal Vomiting/Diarrhea ]

Serious covid symptoms!

ERM: SPO2 Renal Neurologic Diabetes

20

40 60 80 100

learned sub-populations correspond to different causes of death

Liu, J., Wu, J., Pi, R., Xu, R., Zhang, X., Li, B., & Cui, P. (2022, September). Measure the Predictive Heterogeneity. In The Eleventh International Conference on Learning Representations.

R I



Discovering heterogeneous subpopulations: where to go next?

e Limitations of this method: need more efficient ways to discover
heterogeneous subpopulations
o Scale up to larger tasks and models

e Next goal: Understanding heterogeneous subpopulations
o  Why do subpopulations have the Y|X shifts that they have?
m E.g .unobserved confounders, different generating process
m How do these causes affect how we should model them?



Stage 2: Analyze heterogeneity during model training

% : Data Collection : »i Model Training :®
é Deployment :‘ : Model Evaluation %/

Example 1: For invariant learning
Example 2: For DRO



Recall: IRM doesn’t outperform ERM on 1image data

IN SEARCH OF LOST DOMAIN GENERALIZATION

Ishaan Gulrajani* David Lopez-Paz
Stanford University Facebook AI Research
igul222@gmail.com dlp@fb.com

Target Accuracy

CMNIST RMNIST VLCS PACS Office-home Terralnc DomainNet

Plot generated from Table 4 from Gulrajani, 1., & Lopez-Paz, D. (2020, October). In Search of Lost Domain
Generalization. In International Conference on Learning Representations.



Quality of Training Environments

e Invariance set

The invariance set 1 with respect to £ is defined as:
Ie ={2(X) : Y L &[@(X)} = {2(X) : H[Y[®(X)] = H[Y|®(X), £]}

e What happens when € is replaced by &, ?

o supp(&q)< supp(€)
O ‘78 C ggtr
o @®*(X) NOT invariant!

M. Koyama and S. Yamaguchi. OQut-of-distribution generalization with maximal invariant predictor.




No Training Environments!

e Modern datasets are frequently assembled by merging data from multiple sources
without explicit source labels, which means there are not multiple environments
but only one pooled dataset. A A

DD mo A ﬁ ’ SO
<><><><> I Ogcoo




Perspective 2: Explore heterogeneous environments during

training \

a specific kind of data heterogeneity here

Pooled
Data Mc E Eﬁ'ﬂ-m . Mp

Boosting |

Learned Variant Part Convert Learned MIP —__,  Invariant

W(X) @(X) Predictor

Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan Shen. Heterogeneous Risk Minimization. ICML, 2021.



Heterogeneity Identification Module

U(X) = Mc = Eleamn

we implement it with a convex clustering method. Different from other clustering
methods, we cluster the data according to the relationship between ¥ (X) and Y.

® Assume the j-th cluster centre Pg.(Y|V) parameterized by ©; to be a Gaussian
around fg, (V) as N(f@j(\ll),a2):

1 (Y — fo,(¥))?
hi(¥,Y) = Pe;(Y¥) = —="exp(=—— 5 ) (8)

® The empirical data distribution is Py = % vazl 9i(W,Y)
® The target is to find a distribution in Q = {Q|Q = > jeik] Ghi(¥,Y),q € Ak}
to fit the empirical distribution best.

® The objective function of our heterogeneous clustering is:

Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan min DKL(pN “ Q) (9)
Shen. Heterogeneous Risk Minimization. ICML, 2021. ReQ



Invariant Prediction Module

Elearn — Mp — (I)(X) =MoX

The algorithm involves two parts, invariant prediction and feature selection.

4

® For invariant prediction, we adopt the regularizer® as:

Lo(M®X,Y;0) =Eg, [L°] + Atrace(Varg, (VoL)) (10)

® Restrict the gradient across environments to be the same.
® Only use invariant features.

® For feature selection, we adopt the continuous feature selection method that
allows for continuous optimization of M:

L0, u) = EpeEpy [((M © X, Y 0) + af[M]|o] (11)

Koyama, M., & Yamaguchi, S. (2021). When is invariance
® || M” o controls the number of selected features. useful in an Out-of-Distribution Generalization problem ?



Performance

Accuracy
o o o o o o
B w o ~ oo [t

o
w

0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90

Spurious Correlation Strength |r|

0.05 A

4 5

6

7 8

Environment

9

10

15

Scenario 1: n, =9, ny =1
e Training environments Testing environments
Methods el e es €4 es €6 e7 es €9 €10
ERM 0.290 0.308 0.376 0.419 0.478 0.538 0.596 0.626 0.640 | 0.689
DRO 0.289 0.310 0.388 0.428 0.517 | 0.610 0.627 0.669 0.679 | 0.739
EIIL 0.075 | 0.128 | 0.349 0.485 0.795 1.162 1.286 1.527 1.558 1.884
IRM(with & label) 0.306 0.312 0.325 0.328 0.343 0.358 0.365 0.374 | 0.377 | 0.392
HRM?* 1.060 1.085 1.112 1.130 1.207 1.280 1.325 1.340 1.371 1.430
HRM 0.317 0.314 | 0.322 | 0.318 | 0.321 | 0.317 | 0.315 | 0.315 | 0.316 | 0.320
le5
Training(+ | 7|) ' Testing(— | 7|) 0.30 ; > ' —e— ERM
1 E ‘Training E Testing R B ERM 5o | Training } Testing DRO
1 e o DRO
1 .4//;/;/‘—« o . = e ElL 4.5
—~ £ m RM
1 E u; 0.20 1 mEm HRM w 401
: \/\..’- -f_,—D £ 3.51
: S 015 =
| —e— ERM ’ ‘@ >0
-~ DRO ’ & -
—— ElIL 1 0.10
| == Rm E 209 @
—+x— HRM 1

T
€3

Environment

Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan Shen. Heterogeneous Risk Minimization. ICML, 2021.

Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan Shen. Kernelized Heterogeneous Risk Minimization. NeurIPS, 2021.

94



Example: heterogeneous risk minimization

1.0
Train —— Dy
*°7 mmm Test
® The two modules can boost each os

other

Accuracy
o o
[e)} ~

o
U

e The target accuracy is consistent

0.2

with the heterogeneity of learned 041
sub-populations 031 ‘ I ‘
LK
0 5 10 15 20 25

30
Whole-Iteration

Figure from Figure 2 in Liu, J., Hu, Z., Cui, P., Li, B., & Shen, Z. Kernelized heterogeneous risk minimization. In NeurIPS, 2021.

10

KL-divergence between Eeam



Example: heterogeneous risk minimization

Follow-up works on various tasks

® |n recommendation:
o  InvPref

Wang, Z. et al. Invariant preference learning for general debiasing in recommendation. In KDD.
o InvRL

Du, X. et al. Invariant Representation Learning for Multimedia Recommendation. In MM.

® On graph data:

o EERM
Wu, Q. et al. Handling Distribution Shifts on Graphs: An Invariance Perspective. In ICLR.
o LECI

Gui, S. et al. Joint Learning of Label and Environment Causal Independence for Graph Out-of-Distribution
Generalization. In NeurIPS.
o  GALA

Chen, Y. et al. Does Invariant Graph Learning via Environment Augmentation Learn Invariance?. In NeurIPS.



Stage 2: Analyze heterogeneity during model training

b= s = s o Ewm o Ew o Ew on o Ew o Ew o Em o oEw o o

S56— I— ................. 0

o

é Deployment -

Example 1: For invariant learning
Example 2: For DRO

- Model Evaluation :

>i Model Training :é@

i/o



Recall: DRO doesn’t outperform ERM on tabular data

- YIX > X . YIX > X o YIX<X 4 oo YX<X
. 1 [ [
B LR EE NN Balance " Linear-DRO }
3 Bl SVM Tree """ Fairness NN-DRO ’ I
< ! , I ]
- [ [
\
% 80 - i : L
[ [ [ [
= , , L
i i
\

Setting 1 Setting 2 Setting 3 Setting 4 Setting 5 Setting 6 Setting 7

ACS Income ACS Mobility Taxi ACS Pub.Cov US Accident ACS Pub.Cov ACS Income

(50 target) (50 target) (3 target) (50 target) (12 target) (8 target) (1 target)

Typical DRO methods do not significantly outperform traditional
ERM or tree-based methods!

Liu, J., Wang, T., Cui, P., & Namkoong, H. On the Need of a Modeling Language for Distribution Shifts: Illustrations on Tabular Datasets.



Recall: Over-pessimism problem of DRO

e When the uncertainty set is overwhelmingly large, the learned model predicts with

lOW COIlﬁdCIlCG. Lo DRL regular / cancer /N = 20
' —— Likelihood
—— Max. confidence
0.9 1
ming sup Ep[€(0;X,Y)]
P:Dist(P,P;,)<€ 508
£ 07
0.6 Really low
confidence!
0.5 -

-3.0 —2I.5 —2I.0 —1I.5 —ZILO —6.5 OiO 0j5 1.0
. L. . . logio percent true radius

Figure from Frogner, C., Claici, S., Chien, E., & Solomon, J. (2021). Incorporating Unlabeled

Data into Distributionally Robust Learning. Journal of Machine Learning Research, 22(56), 1-46.



Perspective 3: Avoid noisy samples in DRO

N

another specific kind of data heterogeneity here

KL-DRO | X>-DRO

Sample weights Sample weights

0.73 0.64
P 0.30
Lo
0.23
0.03 0.06
e [
Major Minor Noisy Major Minor Noisy
Group Group Samples Group Group Samples

DRO methods focus too much on noisy samples!

Liu, J., Wu, J., Wang, T., Zou, H., Li, B., & Cui, P. Geometry-Calibrated DRO: Combating Over-Pessimism with Free Energy Implications. ICML, 2024.



Perspective 3: Avoid noisy samples in DRO

Example 1 (Weigﬁted Least Square):- Consider the data generation ﬁrocess as Y = kX +¢&, where
X,Y € R and random noise ¢ satisfies £ 1 X, E[¢] =0 and E[£2] (abbr. o?) is finite. Assume that
the trammg dataset X p consists of clean samples {xc ), Ye' }ze[ ~,] and noisy samples {:1;0 , Yo )}ze[ N,]

with 02 < ¢2. Consider the Welghted least-square model f(X) = 0X. Denote the sample weight of a
(@) , )) (@) < (@) (@ ))

clean sample (z¢”,ye” ) as we .1 € [IN.], and the sample weight of a noisy sample (:I:o , Yo

w) € Ry,i € [N,] with ZzE[N ] w((; + ZzE[N ] ws? = 1. The variance of the estimator & is given
by:

Varld|Xp] = S (WP @)208 + 5 (o) (@) 23)
P R S S A S |

DRO methods focus too much on noisy samples!

The parameter estimation will be quite random!
Liu, J., Wu, J., Wang, T., Zou, H., Li, B., & Cui, P. Geometry-Calibrated DRO: Combating Over-Pessimism with Free Energy Implications. ICML, 2024.



Data geometry matters

e Main Idea: data geometric information should be leveraged
o High dimensional data lie on low dimensional manifolds
o Noisy samples are mainly some isolated points
o Hard samples (or minority group samples) are continuous within a
neighborhood

Liu, J., Wu, J., Li, B., & Cui, P. (2022). Distributionally robust optimization with data geometry. NeurIPS, 2022.
Liu, J., Wu, J., Wang, T., Zou, H., Li, B., & Cui, P. Geometry-Calibrated DRO: Combating Over-Pessimism with Free Energy Implications. ICML, 2024.



How to leverage?

e A geometry-aware distance metric: Geometric Wasserstein Distance

P(60) = {(pies €R™| ) pi=1pi 2 0,i € V)
7
Definition 3.1 (Discrete Ge i in Distance GWq, (-, -) [4]). Given a finite graph G,
for any pair of distributions|p®, p* € 2,(Gy), define the Geometric Wasserstein Distance:

. 3| d .
GW&, (@, p") = lﬂf{/ 2 D ki(p)vidt d_€+d’VGo(pv)=0,p(0) =p°,p(1) =p1}, )
0

(i,4)€E

the support of distributions is
restricted to the graph nodes

where v € R™*™ denotes the velocity field on Gy, p is a continuously differentiable curve p(t) :
0,1] = P,(Go), and k;;(p) is a pre-defined interpolation function between p; and p;.

Liu, J., Wu, J., Wang, T., Zou, H., Li, B., & Cui, P. Geometry-Calibrated DRO: Combating Over-Pessimism with Free Energy Implications. ICML, 2024.



How to leverage?

Definition 3.1 (Discrete Geometric Wasserstein Distance GW¢, (-, -) [4]). Given a finite graph G,
for any pair of distributions p°,p* € P,(Gy), define the Geometric Wasserstein Distance:

d; ;
> rip)vhdt | 2 + dive, (pv) =0, e
(3,5)€E

1

. 1

QWéO(pO,pl) ::ugf /5
0

where v € R™*" denotes the velocity field on G, p isfl continuously differentiable curve p(t) :

0,1] = Z,(Go), and k;;(p) is a pre-defined interpojfftion function
Data
Manifold
Lo 2|Aw|?
The density transfers L s
AZa—LB\Z . P@
smoothly along the data Sample A ’___,..‘.‘!".-3 ety Aw]
man l]f o l d . :': AW,L _“,""‘;“ f-Divergence(k=2)
RN L t(z”zs =P Wasserstein

Liu, J., Wu, J., Li, B., & Cui, P. (2022). Distributionally robust optimization with data geometry. NeurIPS, 2022.

"Geometric Wasserstein

Liu, J., Wu, J., Wang, T., Zou, H., Li, B., & Cui, P. Geometry-Calibrated DRO: Combating Over-Pessimism with Free Energy Implications. ICML, 2024.




How to leverage?

e A geometry-aware distance metric: Geometric Wasserstein Distance
e (Geometry-Aware calibration terms

N N
: o 2
mi sup {RN(Qa q) := E il(fo(xi),ys) 5 E wi;q:q; (4 — 45)°F B - E q; log g; }
qthéN (Px,q)<p =1 (i,j)€E N i=1 5
Geometric \xfgsserstein set Calibrat?(:n Term 1 Calibration Term H

/

Graph total variation: penalize noisy samples

Liu, J., Wu, J., Wang, T., Zou, H., Li, B., & Cui, P. Geometry-Calibrated DRO: Combating Over-Pessimism with Free Energy Implications. ICML, 2024.



How to leverage?

e A geometry-aware distance metric: Geometric Wasserstein Distance
e (Geometry-Aware calibration terms

N N
. « 2
min sup {RN(O, Q) =Y qil(fo(x:),y:) 5 > wiiaig;(l— 4 B+ ailoga: }
q:gWéN (Px,q)<p =1 (i,j)€E N i=1 5
Geometric \xfgsserstein set Calibrat?(:n Term 1 Calibration Term H

Gradient of sample weights:

dg;
d_(i = Z w;&ij (q, ¢ — £ + B(log g; — log g;)

(i,7)€E

)

Liu, J., Wu, J., Wang, T., Zou, H., Li, B., & Cui, P. Geometry-Calibrated DRO: Combating Over-Pessimism with Free Energy Implications. ICML, 2024.




Results

KL-DRO GCDRO

Sample weights

Sample weights
0.68

Sample weights
0.64

0.73

0.30

0.22

. 0.10
[

= _
Major  Minor  Noisy
Group Group Samples Major Minor  Noisy
Group Group Samples

Major Minor  Noisy
Group Group Samples

0.23
0.06

lower the sample weights on noisy samples

Liu, J., Wu, J., Wang, T., Zou, H., Li, B., & Cui, P. Geometry-Calibrated DRO: Combating Over-Pessimism with Free Energy Implications. ICML, 2024



Side product: free energy implications

* QOur objective

N
ZQz f0 xz y Yi _% Z w’qu’LQJ ')2_ ﬁ'ZQilogQi }

(i,5)EE

Callbrat;(;n Term 1 Calibrati:); Term II
* Free energy function
N
— T T —
E@= dqa'Kq + q'V - B) (~aqlgg) =-Rn(b,q)
—— — 1
Interaction Energy  Potential Energy o o

"~

Temperature X Entropy

Liu, J., Wu, J., Wang, T., Zou, H., Li, B., & Cui, P. Geometry-Calibrated DRO: Combating Over-Pessimism with Free Energy Implications. ICML, 2024.



Side product: a free energy understanding of DRO

Energy Type

Specific Formulation

Method
Interaction Potential Entropy K V Hlq] &
KL-DRO X 4 v _ 7 Hlq] Ay
¥2-DRO v v X bV -7 - An
Kernel Gram > o) T
MMD-DRO v v X Matrix K ¢~ 8B - An
= Apn with Holder
— v ] (7 - - N
Marginal x“-DRO X X (£=m)+ continuity
/ / ) 7 Geometric
GDRO X ¢ Hiq] Wasserstein Set
. / J/ Interaction 7 Geometric
GCDRO Matrix K ¢ Hld] Wasserstein Set

Liu, J., Wu, J., Wang, T., Zou, H., Li, B., & Cui, P. Geometry-Calibrated DRO: Combating Over-Pessimism with Free Energy Implications. ICML, 2024.



Perspective 4: DRO tailored for specific shifts

N

another specific kind of data heterogeneity here



Perspective 4: DRO tailored for specific shifts

-3
(=]

-

(=)
ot

DRO models based on SVM

Worst Sub-group Accuracy
(=]
[=}

Marginal DRO

Consider shifts induced by age groups: [20,25), [25,30), ..., [75,100)
Consider DRO methods (DHN’22) tailored to shifts on a subset of covariates
Variable selection for ambiguity set: top-K with largest subgroup differences
Performance varies a lot over variables selected

WDRO

SVM LR

XGB LGBM

1 2 3 4 5 6 7 8 9 10

K

1 2 3 4 5 6 7 8 9 10 Al
K Features

Liu, J., Wang, T., Cui, P., & Namkoong, H. On the Need of a Modeling Language for Distribution Shifts: Illustrations on Tabular Datasets.



Perspective 4: DRO tailored for specific shifts

Consider Y|X-shifts from NE -> LA (public coverage task)

Consider DRO methods that consider shifts on a subset of covariates and Y
Variable selection for ambiguity set: Y | “income” suffers the largest shift
Performance varies a lot over variables selected

0.70

DRO models based on SVM ~_

Marginal DRO

Target Macro F1

0.35 SVM LR RF XGBLGBM All Y+All Y-+Income

Features Features Feature

Liu, J., Wang, T., Cui, P., & Namkoong, H. On the Need of a Modeling Language for Distribution Shifts: Illustrations on Tabular Datasets.



Stage 3: Analyze heterogeneity in evaluation

\
T SRR
= i Data Collection ! »\Model Training i®
é Deployment :< ;Model Evaluation %/

Example 1: Error slice discovery
Example 2: Stability Evaluation



Perspective 5: 1t’s important to understand where a model
performs poorly

After training a model, we need to know

On what training data does the model perform POORLY?

If we understand this, we can

e do efficient data re-collection
e do model patching/re-training
e not use the model on certain regions



Example: Slice discovery in training distribution

Labeled Dataset

! "y
& e/
BURBLE-
Q = = O O = ~

Trained Classifier

i

Accuracy: 95%

s

define. A slice discovery method is a
algorithm that finds slicing functions,
which split a dataset into
Lunderperforming slices.

n

Discovered Slices

_J

Slicing Functions

\ Slice Discovery (X, Y)

Method (SDM)

@ vy (X, Y)

yIX,Y)

Figure from Eyuboglu, S.,et al. http://ai.stanford.edu/blog/domino/

e
X vy ¥
o
0 1
] o 1
Accuracy: 53%

y®
X Yy ¥
1 0
‘o
by 1 O

Accuracy: 65%



http://ai.stanford.edu/blog/domino/

Example: slice discovery 1n training distribution

More literature on cross-modal diagnosis

Eyuboglu, S.,et al. Domino: Discovering Systematic Errors with Cross-Modal Embeddings. In ICLR Gao, 1., et al.
Adaptive testing of computer vision models. In ICCV.

Metzen, J. H., et al. Identification of Systematic Errors of Image Classifiers on Rare Subgroups.

Jain, S., et al. Distilling model failures as directions in latent space.

Wiles, O., et al. Discovering Bugs in Vision Models using Off-the-shelf Image Generation and Captioning. In
NeurIPS ML Safety Workshop.

Mozannar, H., et al. Effective Human-Al Teams via Learned Natural Language Rules and Onboarding. In
NeurIPS




Stage 3: Analyze heterogeneity in evaluation

\
T SRR
= i Data Collection ! »\Model Training i®
é Deployment :< ;Model Evaluation %/

Example 1: Error slice discovery
Example 2: Stability Evaluation



Perspective 6: beyond accuracy, evaluate stability

What kind of data distribution 1s the model most sensitive to?

Two ways of generating distribution shifts:

* Data corruptions: changes in the distribution support (1.e., observed data
samples).

» Sub-population shifts: perturbation on the probability density or mass
function while keeping the same support.



Preliminary

If Z C R and W C R, are convex and closed sets, ¢ : (Z x W)%2 = R, is
a lower semicontinuous function, and Q,P € P(Z x W), then the OT
discrepancy with moment constraints induced by ¢, Q and P is the
function M, : P(Z x W)? — R defined through

inf E.[c((Z, W), (Z,W))]

) st ez x W)
M.(Q,F) = Tzw) = Q, Tz 4y =P

E.[W]=1 m-as,
where 7z w) and m 5 13, are the marginal distributions of (Z,W) and
(Z,W) under .
We choose the cost function as:

e((zw), (3,0)) = 0y -w- ([l — &3+ 00|y — §) + 02~ ($(w) — ().

differences between samples differences in probability mass

Blanchet, J., Kuhn, D., Li, J., & Taskesen, B. (2023). Unifying distributionally robust optimization via optimal transport theory
Blanchet, J., Cui, P., Li, J., & Liu, J. Stability Evaluation via Distributional Perturbation Analysis. ICML, 2024.



Perspective 6: beyond accuracy, evaluate stability

Given a learning model fz and the distribution Py € P(Z), we formally
introduce the OT-based stability evaluation criterion as

(5. 7) = { R ®
st Eo(W-£(8,2)] >r.

Some notations:

P: The reference measure selected as Po ® 61, with d; denoting the
Dirac delta function.

¢(B, z): The prediction risk of model fg on sample z.

r > 0: the pre-defined risk threshold. Blanchet, J., Cui, P., Li, J., & Liu, J. Stability Evaluation
via Distributional Perturbation Analysis. ICML, 2024.

Larger R(5,r) = More Stable



Perspective 6: beyond accuracy, evaluate stability

Projection distance to the distribution set where the
model performance falls below a specific threshold

PW)| P=P,® 65,

AEICEY -
liftto | \5 {Q:Eo[W - £(8,2)] 2}
P(ZXW): Q*

ilP’o P(2)

Blanchet, J., Cui, P., Li, J., & Liu, J. Stability Evaluation via Distributional Perturbation Analysis. ICML, 2024.



Perspective 6: beyond accuracy, evaluate stability

Suppose that W = R,.. (i) If ¢(t) = tlogt —t + 1, then the dual problem

) admits:
sup hr — 6z logEp, [exp (ﬁh’ol (Z)> : (1)
h>0 02
(i) If $(t) = (t — 1)?, then the dual problem () admits: sample
.3 2 reweighting
sup hr+a+ 60y —0:kp, o1 ( )+a+1 : (2)
h>0,a€R 20, N
where the d-transform of h - £((3,-) with the step size 0; is defined as
bho,(2) == max h (B, z) — 01 -d(z,3). data

corruption

Blanchet, J., Cui, P., Li, J., & Liu, J. Stability Evaluation via Distributional Perturbation Analysis. ICML, 2024.



Visualization on toy examples

Visualize the most sensitive distribution Q*:

4 4 ~ o 4 ~ . 4
: L] .\ o ‘.-\.‘..:. ...‘00 .. ° .. -\‘ .
‘-:“:;“».-‘ ALY, O ﬁ;ﬁ,. T N
o o0 N v WG .‘. / e -. L) -
- s s :00 L LTI - Q % W' . - / N s o.‘ . ‘" 5 K PO
0 “.’.“‘- 3. .:.‘ 0 5 3 » 0 :.::’. 7 % 0 . z..-.). 3. .:'.
- ;..::.?. .,- . - %:."’iw‘ .\ ) .;:'3:.. . in : .3.%:. ®
4 4 -4 4
4 0 4 4 0 4 -4 0 4 4 0 4
(a) Original Dataset (b)6; = 1.0,02 = 0.25 ()61 =0.2,02 = +00 d) 01 = 400,02 =0.2

Visualizations on toy examples with 0/1 loss function under different
01, 0>. The original prediction error rate is 1%, and the error rate threshold r is

set to 30%. The size of each point is proportional to its sample weight in Q*
Blanchet, J., Cui, P., Li, J., & Liu, J. Stability Evaluation via Distributional Perturbation Analysis. ICML, 2024.



Model stability analysis

Task: Predict individual's income based on personal features.

Method under evaluation:
Empirical Risk Minimization (ERM)
Adversarial Training (AT): designed for robustness to data corruptions

Tilted ERM: designed for robustness to sub-population shifts

Blanchet, J., Cui, P., Li, J., & Liu, J. Stability Evaluation via Distributional Perturbation Analysis. ICML, 2024.



Model stability analysis

A method designed for one class of data perturbation may not be

robust against another:
* AT 1s not stable under sub-population shifts.
* Tilted ERM is not stable under data corruptions.

—4— ERM(MLP) —}— Tilted ERM(MLP) _H_H_H
0.51 =—f—= AT (MLP) !
> = ==
R o
:: o o |
Q0 T
)
-
wn
0.1
more data more population
corruptions shifts
(91:02 01:1 91:+OO
92 = 400 92 =0.25 92 =0.2

Blanchet, J., Cui, P., Li, J., & Liu, J. Stability Evaluation via Distributional Perturbation Analysis. ICML, 2024.



Feature stability analysis

Feature Stability
perturbing on which feature will cause model’s performance drop

providing more fine-grained diagnosis for a prediction model

For i-th feature, choose the cost function as:

c((z,w), (2,0)) = 01w (lz6) — Z)llz + 00 - 12(,—i) — Z(-0)lI3) H02-($(w)— (D))

WV
only allow perturbations on -th feature

Blanchet, J., Cui, P., Li, J., & Liu, J. Stability Evaluation via Distributional Perturbation Analysis. ICML, 2024.



Feature stability analysis

Task: predict individual’'s income based on personal features

Dataset: ACS Income

AN SN AN

RACE: Indian

RELP: Adopted Son
MLP
OCCP: Chefs and Cooks Acc: 82%

RELP: Grandchild
RELP: Institutionalized FOCUS tOO mU»Ch

—

OCCP: Farming Worker | on “Amerlcan
RACE: Indian Indlan” feature

Top-5 Sensitive Features

AL SN AN

0
Blanchet, J., Cui, P., L1, J.,

LR
RELP: Non-Institutionalized Acc: 83%

OCCP: Healthcare Worker
RELP: Grandchild

5el-3
& Liu, J. Stability Evaluation via Distributional Perturbation Analysis. ICML, 2024.



Feature stability analysis

Task: predict mortality caused by COVID-19

1: Comorbidity: Immunosuppresion

2: ngion: Indigena
MLP

:3’ Agey < 40 Acc: 69%
& Age ho~50 Does the model perform

5: Comorh‘idity: Liver WCH over all age groups?

1: Age: > 70 ‘

U

Age: < 40 ‘

LR
Region: Branca Acc: 70%

Symptom: SpO2

Top-5 Sensitive Features

TR .

Comorbidity: Renal

0 le-3

“Age” matters a lot

Blanchet, J., Cui, P., Li, J., & Liu, J. Stability Evaluation via Distributional Perturbation Analysis. ICML, 2024.
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Feature stability analysis

Task: predict mortality caused by COVID-19

1: @omorbidity: Immunosuppresion S0% [ Accuracy: ERM(L
2: ngion: Indigena
MLP
@ < 40 Acc: 69%
4: Age: }10~50
5: Comorﬂidity: Liver

1: Age: > 70 ‘ 50%

77 M Accuracy: intervenfion(LR)
|

[

Accuracy

2T F1 Score: ERM(LE
B F1 Score: intervenfion(LR)

-2 e %
d %D
“Age” matteI'S a lot 40~50 50 ~ 60 60~ 70

Blanchet, J., Cui, P., Li, J., & Liu, J. Stability Evaluation via Distributional Perturbation Analysis. ICML, 2024.

o
@

2: Age: < 40 ‘

LR
3: Region: Branca ‘ Acc: 70%

Top-5 Sensitive Features

4: Symptom: SpO2 ‘

5: Comorbidity: Renal ‘

Macro F1 Score

0 1le-3

e
o



Feature stability analysis

Task: predict mortality caused by COVID-19

80% [ Accuracy: ERM(LE)
77 M Accuracy: intervenfion(LR)
|

* For Age<40 and
Age>70, the accuracy 1s
high, but Macro-F1
score is too low

* It simply predicts based
on Age!

[

50% I

2T F1 Score: ERM(LH)
B F1 Score: intervenfion(LR)

W 7' %
0.5 /‘ " /
40~50 50 ~ 60 60 ~ 70

Blanchet, J., Cui, P., Li, J., & Liu, J. Stability Evaluation via Distributional Perturbation Analysis. ICML, 2024.

Accuracy

e
o

Macro F1 Score




Targeted algorithmic intervention

Insight: Feature stability can motivate refined algorithmic
intervention.

« for AT, only perturb the identified sensitive racial feature “American Indian™
* significantly increase the worst racial group accuracy

Blanchet, J., Cui, P., Li, J., & Liu, J. Stability Evaluation via Distributional Perturbation Analysis. ICML, 2024.



Targeted algorithmic intervention

Worst Racial Group Accuracy
R

BN

=}

X
1

MLP LR AT Targeted AT

Blanchet, J., Cui, P., Li, J., & Liu, J. Stability Evaluation via Distributional Perturbation Analysis. ICML, 2024.



Advertisement: Survey on OOD Evaluation

A Survey on Evaluation of Out-of-Distribution
Generalization

Han Yu, Jiashuo Liu, Xingxuan Zhang, Jiayun Wu, Peng Cuif, Senior Member, IEEE

Abstract—Machine learning models, while progressively advanced, rely heavily on the 11D assumption, which is often unfulfilled in
practice due to inevitable distribution shifts. This renders them susceptible and untrustworthy for deployment in risk-sensitive
applications. Such a significant problem has consequently spawned various branches of works dedicated to developing algorithms
capable of Out-of-Distribution (OOD) generalization. Despite these efforts, much less attention has been paid to the evaluation of OOD
generalization, which is also a complex and fundamental problem. Its goal is not only to assess whether a model’s OOD generalization
capability is strong or not, but also to evaluate where a model generalizes well or poorly. This entails characterizing the types of
distribution shifts that a model can effectively address, and identifying the safe and risky input regions given a model. This paper serves
as the first effort to conduct a comprehensive review of OOD evaluation. We categorize existing research into three paradigms: OOD
performance testing, OOD performance prediction, and OOD intrinsic property characterization, according to the availability of test
data. Additionally, we briefly discuss OOD evaluation in the context of pretrained models. In closing, we propose several promising
directions for future research in OOD evaluation.

Index Terms—Out-of-Distribution Generalization, Distribution shift, Model Evaluation, Dataset Benchmarks, Performance Prediction,
Invariant Learning, Distributionally Robust Optimization



Stage 4: Analyze heterogeneity after deployment

é Deployment < : Model Evaluation E/

Example 1: Y| X-shifts vs. X-shifts
Example 2: Covariate region analysis



Perspective 7: 1t’s important to understand why your model performs

poorly across a distribution shift .
Train Targete.g. deployment

P '
Different interventions for different shifts! Q
1.Algorithm #1: domain adaptation

2.Algorithm #2: DRO
3.Algorithm #3: invariant learning

4....
5.Collect more data from target

These make modeling
assumptions. Do they apply?

Understand distribution shift
to determine next steps!

6.Collect more features

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



Attribute change in performance to distribution shifts

X-shifts Y| X-shifts
changes 1n sampling, changes 1n labeling or
population shifts, minority mechanism, poorly chosen X

groups

e Real distribution shifts involve a combination of both shifts
® Attribute change in model performance to shifts: not all shifts matter

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



L: loss

4 P: train
Q: target
density
of X You can only
compare Y|X on
shared X
A
expected N Tt~ - —— -~ ‘—EQ[le]
loss given X /) — — «—E,[L|X]
_ 7
— o>
< * . » X=age L 1s loss
EQ[L|X] not Ep[L|X] not
well-defined well-defined

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



L: loss

P: train
Detine Shared Distribution Q: target
S: shared

density
of X

N X=age

. X X
density Sy (%) & pPx(x)qx(x)

of X S px(x) + qx(x)
X

>Xzage

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



L: loss

P: train

Q: target
Legend: S: shared

Y | X
X shift ! shift
—_— v

Decompose change in performance

X shift (P — 5)
Ep[Ep[L|X]] > Eg[Ep[L|X]]

Y | X shift

<

X shift (S — Q)
Eg[Eq[LIX]] > EqlEq[LIX]]

shared X distribution

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



L: loss
o P: train
Employment prediction case study Q: target
S: shared

[Y]X shift] P: West Virginia, Q: Maryland

0.70 1 - ooy )
C
ST |
o WYV model does not use
0.65 A § © .
> R education.
= D Sv_
S 0.60 Y|X shift because of missing
< . .
covariate: education affects
0.55 - mEm X shift (P to S) |
' mEm X shift (S to Q) employment
Y|X shift
0.50 :
Source (WV) Target (MD) Difference

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



For reference: other diagnostic tools

Haoran Zhang, Harvineet Singh, Marzyeh Ghassemi, Shalmali Joshi. "Why did the Model Fail?": Attributing Model
Performance Changes to Distribution Shifts (2022)

Xingxuan Zhang, Yue He, Renzhe Xu, Han Yu, Zheyan Shen, Peng Cui. NICO++: Towards Better Benchmarking for
Domain Generalization (2022)

Adarsh Subbaswamy, Roy Adams, Suchi Saria. Evaluating Model Robustness and Stability to Dataset Shift (2021)

Finale Doshi-Velez, Been Kim. Towards A Rigorous Science of Interpretable Machine Learning (2017)



Stage 4: Analyze heterogeneity after deployment

é Deployment < : Model Evaluation E/

Example 1: Y|X-shifts vs. X-shifts
Example 2: Covariate region analysis



Perspective 8: 1t’s important to understand where you have Y|.X
shifts

When model performance drops after deployment, we need to know

Where does the model performance drop
because of Y|X shift?

If we understand this, then we can collect
data better.



Identify covariate regions with Y| X-shifts

How to Better Understand Y| X-Shifts?

1. Construct shared distribution from training and target

2. Model Y separately on each of training and target: fp, fq

Find Covariate Regions with
Strong Y|X-Shifts!

3. Model difference in Y between train and target | f,(z) — f,(z)| on shared distribution

using interpretable tree-based model

density
of X

density
of X

P, Q

»

>

Px(x)qx(x)

sx(x) px(x) + qx(x)
Sx

\/

Liu, J., Wang, T., Cui, P., & Namkoong, H. (2023, November). On the Need for a Language Describing Distribution Shifts: Illustrations on

Tabular Datasets. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track.




Identify covariate regions with Y| X-shifts

— e o o o o o E o e o e e EE E e e =

( \
| Task: Income Prediction !
Tabular Data . Shift: CA -> PR !
Work Hour > 34.5 Rules
. - * Sex: female Age =31
CD/ \) * Work Hour €[34.5,49.5]
Education > College + Education > College
* Occupation set A : MGR, 1 1 1
Q/ " e o ¥ Y|X §h1ft region consists of
occupations that require language
Occupation € A /
no yes . . .
\_-D/ RER Official languages are different in
sk Region
CA and PR!
(c) Region with Y| X -shifts (XGBoost)

Liu, J., Wang, T., Cui, P., & Namkoong, H. (2023, November). On the Need for a Language Describing Distribution Shifts: Illustrations on
Tabular Datasets. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track.




Tool 4: Identify Regions with Y|X-Shifts

Include language features when training

on CA — better performance in PR

No language features
81.7

Accuracy
degradation

Accuracy

[
Y|X shift

B X shift(P)
X shift(Q)

CA PR Difference

With language features
81.8

CA

PR

=
=]
o=
=

Accuracy
degrada

Y|X shift

BN X shift(P)
BN X shift(Q)

collecting better features

Difference

Test Accuracy

~
(=]

Good data may be more effective!

— o o o o o o o o o e o o o o Em

LR

Original Setting W Add Region Data
0 Add Target Data

MLP RF LightGBM XGBoost

collecting better target data

Liu, J., Wang, T., Cui, P., & Namkoong, H. (2023, November). On the Need for a Language Describing Distribution Shifts: Illustrations on
Tabular Datasets. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track.




Recap

e Heterogeneity is really important!
e Two existing approaches to domain generalization

o  Make modeling assumptions: principled, but do the assumptions hold?
o  Scaling up data: effective for internet-scale data, but for many problems data is costly
e Heterogeneity-aware approach:

o  Develop and use tools to understand heterogeneity in your setting.
o  Then, use this understanding throughout the entire modeling process.



Future directions

e We need a system-level view; “industrial engineering” for Al

o Design better workflows

—o
(—-o/

: Data Collection '

————————————————— I
A

. Deployment

Develop tools to
model data
heterogeneity

S

I S )

. Model Evaluation ' 4



Future directions

e We must build models that know what it doesn’t know
e Recognize unforeseen heterogeneity at test time
e Connections to uncertainty quantification

o Bayesian ML, conformal prediction etc

o Requires explicitly modeling unobserved factors



Future directions

e Based on this uncertainty, agents must decide how to actively collect data to
reduce this uncertainty
e Connections to reinforcement learning and active learning

:[ Agent}
state reward action

Sr Rr A,

i‘ Rt+1 ( .
I S| Environment |

\,




Future directions

e We need a system-level view; “industrial engineering” for Al
o Design better workflows
e We must build models that know what it doesn’t know
o  We only collect outcomes on actions (observations) we take (measure)
e Based on this uncertainty, agents must decide how to actively collect data to
reduce this uncertainty
e Overall, exciting research space with many open problems!



